problem on fourier series
Find the Fourier series representing
f (x) = x, 0 < x < 2π
and sketch its graph from x = −4π to x = −4π
Solution: Let f (x)
=a0/2+a1 cos x + a2 cos 2x +b1 sin
x +b2 sin 2x .....
Hence a0 =(1/ π) 2π ∫0 x dx
=(1/ π)[x^2/2]02π = 2π
an = (1/ π) 2π ∫0 f (x)
cos nx dx
=(1/ π)[x (sin nx/n) -1 (- cos nx/n2) ]02π =(1/ π)[cos2n π/n2
- 1/n2]
=(1/n2 π) [1-1]=0
bn= (1/ π) 2π ∫0 f (x)
sin nx dx =(1/ π) 2π ∫0 x sin
nx dx
=(1/ π)[x(- cos nx/n2)-1 (-sin nx/n2)]02π =(1/
π)[- 2πcos2nπ/n]= -2/n
Substituting the
values of a0 an, bn , in (1), we get
X=π-2[sin
x +1/2 sin 2x +1/3 sin 3x +………]
<script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-1688730777350635"
crossorigin="anonymous"></script>
Example: Find the Fourier sine series for the function
f (x) = eax for −π ≤ x ≤ π
where a is constant.
Ans: ∫ eax sin bx dx = (eax/
a2 +b2) [ a sin bx -bcos nx]
bn =∫ eax
sin nx dx
= (2/ π) [ (eax/ a2
+n2) (a sin nx-ncos nx) ]0π
= (2/ π) [ (ea π / a2
+n2) (a sin n π -ncos n π) + n/ a2 +n2]
= (2/ π) ( n/ a2
+n2) [-(-1)n ea π +1]
= {n/ (a2 +n2) π} [1-(-1)n
ea π ]
b1 = 2(1 + ea π)/ (a2
+12) π b2 = 2.2(1 - ea π)/ (a2
+22) π
eax = (2/ π)[{ (1 + ea π)/ (a2
+12) π} sin x
+ { 2(1 - ea π)/ (a2
+22) π} + ……….]
crossorigin="anonymous"></script>
Expand f(x) = ex in a cosine series over (0, 1).
Ans: f(x) = ex and c =1
a0
= (2/ c) c ∫0 f (x)
dx =(2/ 1) 1 ∫0 ex dx =2(e-1)
an = (2/ c) c ∫0 f (x) cos(nπx/c) dx ==(2/
1) 1 ∫0 ex cos(nπx/1) dx
= 2[ (ex/ π2n2
+1) (nπ sin nπx + cos nπx) ]01
= 2[ (ex/ π2n2
+1) (nπ sin nπx + cos nπx) - 1/ (π2n2 +1)]
=2/ (π2n2
+1) [ (-1)n e
-1]
f(x)= a0/2 + a1 cos
πx + a2 cos 2πx + a3 cos 3πx +…………..
ex = e -1 + 2[ (-e-1/ π2+1) cos πx +(-e-1/4 π2+1) cos 2πx +(-e-1/ 9π2+1) cos 3πx + …...
By using the sine series for f(x) = 1 in 0 < x < π
show that
π2/8 =1 + 1/32 + 1/52 + 1/72 + 1/92+ ……
Ans : sine series is f(x) = Σ bn sin nx
bn = (2/ π) π ∫0 f(x)
sin nx dx
= (2/ π) π ∫0 (1) sin nx dx =(2/ π)(-
cos nx/n)0π
= (-2/ nπ) [cos nπ -1] = (-2/ nπ) [(-1)n -1]
= -4/nπ if n is odd
0
if n is even
Then, the sine
series is
1=(4/π
)sin x + (4/3π )sin 3x + (4/5π )sin 5x +
(4/7π )sin 7x +………
c ∫0 [f (x)]2 dx
= c/2[b12
+ b22 + b32 + b42
+ b52 +….]
c ∫0 [1]2 dx = π/2[(4/π )2+ (4/3π )2+
(4/5π )2 + (4/7π )2+………]
[x]0π = (π/2)
(16/ π2)[1 +
1/32+ 1/52 + 1/72+………]
π = (π/2) (16/ π2)[1 + 1/32+ 1/52
+ 1/72+………]
π2/8 =1+ 1/32+ 1/52 + 1/72+……
crossorigin="anonymous"></script>
Do more more problem , so that it will help us in sloving problem
ReplyDeleteVery nice🤟🤟🤟
ReplyDeleteVery nice explanation and clear to understand
ReplyDeleteNice explanation
ReplyDeleteVery nice 👍👌 sir
ReplyDelete