problem on fourier series

 

Find the Fourier series representing

                                                   f (x) = x, 0 < x <

and sketch its graph from x = −4π to x = −4π

Solution:   Let f (x) =a0/2+a1 cos x + a2 cos 2x +b1 sin x +b2 sin 2x .....

Hence   a0 =(1/ π)  2π 0 x dx =(1/ π)[x^2/2]02π  = 2π

an = (1/ π) 2π 0 f (x) cos nx dx

  =(1/ π)[x (sin nx/n) -1 (- cos nx/n2) ]02π    =(1/ π)[cos2n π/n2  - 1/n2]

    =(1/n2 π) [1-1]=0

bn= (1/ π) 2π 0 f (x) sin nx dx =(1/ π) 2π 0 x sin nx dx

=(1/ π)[x(- cos nx/n2)-1 (-sin nx/n2)]02π     =(1/ π)[- 2πcos2nπ/n]= -2/n

 Substituting the values of a0 an, bn , in (1), we get

X=π-2[sin x +1/2 sin 2x +1/3  sin 3x +………]




<script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-1688730777350635"

     crossorigin="anonymous"></script>




Example: Find the Fourier sine series for the function

                                            f (x) = eax     for −π ≤ x ≤ π

                      where a is constant.

 Ans:  ∫ eax sin bx dx = (eax/ a2 +b2) [ a sin bx -bcos nx]

 bn =∫ eax sin nx dx

 = (2/ π) [ (eax/ a2 +n2) (a sin nx-ncos nx) ]0π    

   = (2/ π) [ (ea π    / a2 +n2) (a sin n π -ncos n π) + n/ a2 +n2]

      = (2/ π) ( n/ a2 +n2) [-(-1)n  ea π +1]

= {n/ (a2 +n2) π} [1-(-1)n ea π ]

b1 = 2(1 + ea π)/ (a2 +12) π            b2 = 2.2(1 - ea π)/ (a2 +22) π    

eax = (2/ π)[{ (1 + ea π)/ (a2 +12) π} sin x + { 2(1 - ea π)/ (a2 +22) π} + ……….]

 

 <script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-1688730777350635"

     crossorigin="anonymous"></script>

 

Expand f(x) = ex in a cosine series over (0, 1).

Ans:   f(x) = ex    and c =1

        a0 = (2/ c) c 0 f (x) dx =(2/ 1) 1 0  ex dx =2(e-1)

        an = (2/ c) c 0 f (x) cos(nπx/c) dx ==(2/ 1) 1 0  ex cos(nπx/1) dx

              = 2[ (ex/ π2n2 +1) (nπ sin nπx + cos nπx) ]01   

              = 2[ (ex/ π2n2 +1) (nπ sin nπx + cos nπx) - 1/ (π2n2 +1)]

               =2/ (π2n2 +1) [ (-1)n e -1]

    f(x)= a0/2 + a1 cos πx + a2 cos 2πx + a3 cos 3πx +…………..

         ex  = e  -1 + 2[ (-e-1/ π2+1) cos πx +(-e-1/4 π2+1) cos 2πx +(-e-1/ 9π2+1) cos 3πx + …...






By using the sine series for f(x) = 1 in 0 < x < π show that

      π2/8  =1 + 1/32 + 1/52 + 1/7+ 1/92+ ……

Ans : sine series is f(x) = Σ bn sin nx  

bn = (2/ π)  π 0 f(x) sin nx dx

     = (2/ π)  π 0 (1) sin nx dx =(2/ π)(- cos nx/n)0π

    = (-2/ nπ) [cos nπ -1]     = (-2/ nπ) [(-1)n -1]

  =     -4/nπ            if n is odd

0                              if n is even

       Then, the sine series is

                 1=(4/π )sin x  + (4/3π )sin 3x + (4/5π )sin 5x + (4/7π )sin 7x  +………

       c 0 [f (x)]2 dx = c/2[b12 + b22 + b32 + b42 + b52 +….]

             c 0 [1]2 dx = π/2[(4/π )2+ (4/3π )2+ (4/5π )2 + (4/7π )2+………]

            [x]0π = (π/2) (16/ π2)[1 + 1/32+ 1/52 + 1/72+………]

                  π = (π/2) (16/ π2)[1 + 1/32+ 1/52 + 1/72+………]

               π2/8 =1+ 1/32+ 1/52 + 1/72+……

 

 <script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-1688730777350635"

     crossorigin="anonymous"></script>

Comments

  1. Do more more problem , so that it will help us in sloving problem

    ReplyDelete
  2. Very nice🤟🤟🤟

    ReplyDelete
  3. Very nice explanation and clear to understand

    ReplyDelete
  4. Nice explanation

    ReplyDelete

Post a Comment

If you like then share it and comments us how to improve

Popular posts from this blog

PROBLEM ON NUCLEAR PHYSICS

PREVIOUS YEAR (2020) COMMON P.G ENTRANCE PHYSICS QUESTION SOLUTION

Explain the schemes available for extraction of maximum power from solar energy