MOCK TEST FOR CPET


 

Q/1. An object is dropped on a cushion from a height 10m above it. On being hit, the cushion is depressed by 0.1 m . Assuming that the cushion provides a constant resistive force, the deceleration of the object after hitting the cushion, in terms of the acceleration due to gravity g is ?

 (a) 10 g               (b) 50 g             (c) 100 g               (d) g

Ans :  From conservation at energy

                         mgh =  mv2/2

               v = (20g)

 The equation at motion when partition the cushion

                              mv(dv/dx) = mg – k

             (20g)0 vdv = 0.10 (g-k/m) dx

                  V2/2 |(20g)0  = (g-k/m)-0.1

                   By sloving we get ; a= 100g

 

Q/2. Assume that the earth revolves in a circular orbit around the sun. Suppose the gravitational constant G varies slowly as a function of time. In particular, it decreases to half its initial value in the course of one million years. Then during this time the?

 (a) Radius of the earth’s orbit will increase by a factor of two

(b) Total energy of the earth remains constant

(c) Orbital angular momentum of the earth will increase

(d) Radius of the earth’s orbit remains the same.

 Ans : G = G(t)      ;    M =  Mass of sun , m = mass of Earth

The given Problem is central force problem so angular momentum of system is conserved. 

 Total Energy of system is

            E = mr ̇2/2 +J2/2mr2 – GMm/r

Hence G = G(t)    so  dE/dt ¹ 0

So total Energy is not conserve

 Condition for circular motion  ;     J2/mr3 = GMm/r2

                     r  1/G

    r2/r1 = G1/G2

         r2 = (G1/G2)r1

  By putting ; G2 =G1/2

                 r2 = 2r1

 

 

Q/3. A particle of mass m moves in One dimension in the potential V(x)= kx4 ; (k > 0) . at time t = 0 the particle starts from rest at x = A. For bounded motion, the time period of its motion is  ?

(a) Proportional to  A-1/2

(b) Proportional to A-1

(c) Independent of A

 (d) Not well-defined

Ans: J = pdx           

        J = 4 0 {2m(E -kx4)} dx          ; upper limit (E/k)1/4

             Again  P2/2m +kx4 = E ;     4(2mE)* (E/k)1/4

           P=0, x=A  ; E= kA4    ,J  E3/4

           T= dJ/dE  E-1/4

            T=kA-1     T 1/A

 

Q/4. The wavefunction of a free particle of mass m , constrained to move in the interval -L   L , is Ψ(x) =A(L+x)(L- x)  , where A is the normalization constant. The probability that the particle will be found to have the energy p2ђ2/2mL2  is ?

(a) 0             (b) 1/2            (c) 1/23           (d) 1/π

 Ans :       En = n2π2ђ2/2mL2  

         E1 =π2ђ2/2mL2  ;     |Φ1> =(2/2L) cos(πx/2L)   ; - x    L

         E2 = 4π2ђ2/2mL2  ;     |Φ2 > =(2/2L) sin(2πx/2L)   ; -  x   L

        P(E2) = |< Φ2|Ψ >|2/<Ψ|Ψ >

        = |-LL (2/2L) sin(2πx/2L)A(L+x)(L- x)dx|2/-LL A2(L+x)2(L- x)2 dx

-LL sin(2πx/2L)A(L+x)(L- x)dx =0

        Where  (2πx/2L)A(L+x)(L- x) is odd

 

Q/5. A particle moving in a central potential is described by a wavefunction Ψ(x) = zf(r) where r = (x,y,z ) is the position vector of the particle and f (r) is a function of r = |r|. If L is the total angular momentum of the particle, the value of  L2 must be ?

(a) 2ђ2                (b) ђ2          (c) 4ђ2            (d) (¾)ђ2

 Ans : Ψ(r) = zf(r) =  r cosθ f(r)  

cosθ = P1(cosθ)       l=1

   Ψ(r,θ,Φ) = P1(cosθ)r f(r)         

 the measure at  L2 have eigen value       l(l+1)ђ2   

put ; l=1      eigen value =2ђ2                

 

Q/6. The ratio of orbital magnetic dipole moment ml to the orbital angular momentum L of an electron in an orbit is given by

(a)μL/L =μb/ђ     (b) μL/L = -μb/ђ     (c) μL/L = -μb/2ђ     (d) μL/L =μb/2ђ     

Ans :  i = -e/(2πr/v)      

           μ = -eVπr2/2pr  = -eVr/2

         μ =-eL/2m = -(eђ/2m)√{l(l+1)}                  (L= mVr)

         μ =-μb√{l(l+1)} ;     

        μ =-μbL/ђ ;         μL/L = -μb/ђ            

Q/7. The half-width of gain profile of a He-Ne laser is  2*10-3nm . If the length of the cavity is30 cm , how many longitudinal modes can be excited? The emission wavelength is 6328 A0

(a) 1              (b) 2           (c) 3              (d) 4   

Ans : For longitudinal modules         nλ/2  = L

                   n= 2L/λ  = (2*0.3)/(6328*10-10) = 106

          again  λ= 2L/n ;   dλ = |-(2L/n2)dn|

                dλ  = (2*0.3/n2)*1 =0.6/1012= 0.6*10-12

     Number of modes = Dλ/dλ = 2*10-18/0.6*10-12 = 3.33 3

 

Q/8. The mean free path of molecules of a gas at pressure p and T temperature is 2*10-5 cm  . The mean free path at pressure  p/2  and temperature 2T will be

 (a) 10-5 cm          (b) 8´10-5 cm       (c)10-5 m           (d) 8´10-5 m  

Ans :  λ1 = kBT/sP

          λ2 = kB*2T/s(P/2)

            λ2 = 4l1 = 4*2*10-5 = 8*10-5 cm

Q/9. For the adiabatic expansion of a blackbody radiation enclosure, which of the following is correct?

 (a) V1/3T = constant

(b) V T.= constant

 (c) V4/3T = constant

 (d) V.T =constant               where V is the volume and T is the temperature of the enclosure

Ans : For adiabatic expansion PV =k (constant)

g = 4/3   (Assuming photon as monoatomic gas)

    PV = RT ;  P=RT/V

   ⇒ (RT/V)V =k

    TVꝩ-1 = TV1/3 = constant k

Q/10. At what temperature; pressure remaining unchanged, will the molecular velocity (root mean square velocity) of hydrogen will be double of its value at NTP?

  (a)10920 C      (b)8190 C     (c)10920 F       (d)8190 K

Ans : Vrms T   

         2V/V  = (T2/T1 NTP)

                  T2/T1 = 4

T2= 4*273 K =  10920K

   T2(0 C) = 1092-273 = 8190 C

 

 

 

 

 

 

 

Comments

Post a Comment

If you like then share it and comments us how to improve

Popular posts from this blog

PREVIOUS YEAR (2020) COMMON P.G ENTRANCE PHYSICS QUESTION SOLUTION

Explain the schemes available for extraction of maximum power from solar energy

PREVIOUS YEAR (2020) COMMON P.G ENTRANCE PHYSICS QUESTION SOLUTION -2