QUANTUM MECHANICS PROBLEMS

 

Q/1. For an electron in a one-dimensional infinite potential well of width 1 Å, calculate (i) the separation between the two lowest energy levels; (ii) the frequency and wavelength of the photon corresponding to a transition between these two levels ?  

Ans : (i)   En = π2ђ2n2/2ma2    ;   2a = 1Å

            E2 – E1 = (4 -1)π2ђ2/2ma2   

                       = 3*π2(1.055-10-34 )2/8*9.1*10-31 *10-20  

                       = 1.812*10-17 J = 113.27 eV  

   (ii) hν = E2 – E1 = 1.812*10-17 J

                 hc/λ = 1.812*10-17 J

                 λ= 6.62*10-34 *3*108/1.812*10-17 =1.1*10-8 m

 

Q/2. Calculate the expectation values of position <x> and of the momentum <px> of the particle trapped in the one-dimensional box  in the potential V(x) = 0 for 0 x a  and V(x) = otherwise?

 Ans : <x> =(2/a) 0a  sin(nπx/a) *x* sin(nπx/a) dx

                   =(2/a) 0a x sin2(nπx/a) dx =(1/a) 0a x*[1- cos(2nπx/a)] dx

                  =(1/a) 0a x dx - (1/a) 0a  cos(2nπx/a) dx

        <x> = a/2

          <px> = (2/a) 0a sin(nπx/a) {-iђ(d/dx)}* sin(nπx/a) dx

                  =-iђ(2nπ/a2) 0a sin(nπx/a) *cos(nπx/a) dx

                 =-iђ(nπ/a2) 0a sin(2nπx/a) dx = 0

 

 Q/3. An electron in a one-dimensional infinite potential well, defined by V(x) = 0 for 0 x a  and V(x) = otherwise, goes from the n = 4 to the n = 2 level. The frequency of the emitted photon is 3.43 *1014 Hz Find the width of the box ?

Ans :   En = π2ђ2n2/2ma2    ;   

            E4 – E2 = (16 -4)π2ђ2/2ma2 = hν

           a2 = 3h/8mν = 3*6.626*10-34/(8*9.1*10-31 *3.43*1014)

                 =   79.6*10-20 m2

           a = 8.92*10-10m

 

 Q/4. A particle of mass m trapped in the potential V(x) = 0 for 0 x a  and V(x) = otherwise, Evaluate the probability of finding the trapped particle between x = 0 and x = a/n when it is in the nth state?

Ans :  Wave function ψ(x) = (2/a)  sin(nπx/a)

          Probability density P(x) = (2/a)  sin2(nπx/a)

           Required probability P =0a/n P(x)dx =  0a/n (2/a)  sin2(nπx/a) dx

                                  P  =(1/a) 0a/n[1- cos(2nπx/a)] dx

                                  =1/n

 

Q/5. The wave function of a particle confined in a box of length a is

                          ψ(x) = (2/a)  sin(nπx/a)  ;           0 x a

 Calculate the probability of finding the particle in the region 0 < x < a/2 ?

Ans : The required probability P = 0a/2 P(x)dx =(2/a) 0a/2 sin2(πx/a) dx

                =(1/a) 0a/2[1- cos(2πx/a)] dx

              =(1/a) 0a/2 dx - (1/a) 0a/2 cos(2πx/a) dx                    

                 = ½                      

Q/6. An electron is in the ground state of a one-dimensional infinite square well with a = 10–10 m. Compute the force that the electron exerts on the wall during an impact on either wall ?

 Ans :  The force on the wall ;    F = -(dEn/da)

              The energy of the ground state ; E1= π2ђ2/2ma2    

          Hence the force on the wall F = -(dEn/da)|a= 10-10   = π2ђ2/2ma3

                           = π2(1.054*10-34)2/{9.1*10-31*(10-10)3}

                         =1.21*10-7N

 

 

 

 

Comments

Post a Comment

If you like then share it and comments us how to improve

Popular posts from this blog

PREVIOUS YEAR (2020) COMMON P.G ENTRANCE PHYSICS QUESTION SOLUTION

Explain the schemes available for extraction of maximum power from solar energy

PREVIOUS YEAR (2020) COMMON P.G ENTRANCE PHYSICS QUESTION SOLUTION -2