QUANTUM MECHANICS PROBLEMS
Q/1. For an
electron in a one-dimensional infinite potential well of width 1 Å, calculate
(i) the separation between the two lowest energy levels; (ii) the frequency and
wavelength of the photon corresponding to a transition between these two levels
?
Ans : (i) En
= π2ђ2n2/2ma2 ; 2a = 1Å
E2 – E1 = (4 -1)π2ђ2/2ma2
= 3*π2(1.055-10-34 )2/8*9.1*10-31 *10-20
= 1.812*10-17
J = 113.27 eV
(ii) hν = E2 – E1 =
1.812*10-17 J
hc/λ
= 1.812*10-17 J
λ= 6.62*10-34 *3*108/1.812*10-17
=1.1*10-8 m
Q/2. Calculate
the expectation values of position <x> and of the momentum <px>
of the particle trapped in the one-dimensional box in the potential V(x) = 0 for 0≤ x≤ a and V(x) = ∞ otherwise?
Ans : <x> =(2/a) 0∫a
sin(nπx/a) *x* sin(nπx/a) dx
=(2/a) 0∫a
x sin2(nπx/a) dx =(1/a) 0∫a
x*[1- cos(2nπx/a)] dx
=(1/a) 0∫a
x dx - (1/a) 0∫a cos(2nπx/a) dx
<x> = a/2
<px> = (2/a) 0∫a
sin(nπx/a) {-iђ(d/dx)}* sin(nπx/a) dx
=-iђ(2nπ/a2) 0∫a
sin(nπx/a) *cos(nπx/a) dx
=-iђ(nπ/a2) 0∫a
sin(2nπx/a) dx = 0
Q/3. An electron in a one-dimensional infinite
potential well, defined by V(x) = 0 for 0≤ x≤ a and V(x) = ∞ otherwise, goes from the n = 4 to
the n = 2 level. The frequency of the emitted photon is 3.43 *1014
Hz Find the width of the box ?
Ans : En
= π2ђ2n2/2ma2 ;
E4 – E2 = (16 -4)π2ђ2/2ma2 = hν
a2 = 3h/8mν = 3*6.626*10-34/(8*9.1*10-31
*3.43*1014)
= 79.6*10-20 m2
a = 8.92*10-10m
Q/4. A particle of mass m trapped in the potential
V(x) = 0 for 0≤ x≤ a and V(x) = ∞ otherwise, Evaluate the probability
of finding the trapped particle between x = 0 and x = a/n when it is in the nth
state?
Ans : Wave function ψ(x) =
√(2/a) sin(nπx/a)
Probability density P(x) = (2/a) sin2(nπx/a)
Required probability P =0∫a/n P(x)dx = 0∫a/n (2/a) sin2(nπx/a) dx
P =(1/a) 0∫a/n[1- cos(2nπx/a)] dx
=1/n
Q/5. The
wave function of a particle confined in a box of length a is
ψ(x) = √(2/a) sin(nπx/a)
; 0≤ x ≤ a
Calculate the probability of finding the
particle in the region 0 < x < a/2 ?
Ans : The
required probability P = 0∫a/2 P(x)dx =(2/a) 0∫a/2 sin2(πx/a) dx
=(1/a) 0∫a/2[1- cos(2πx/a)] dx
=(1/a) 0∫a/2 dx - (1/a) 0∫a/2 cos(2πx/a) dx
= ½
Q/6. An
electron is in the ground state of a one-dimensional infinite square well with
a = 10–10 m. Compute the force that the electron exerts on the wall
during an impact on either wall ?
Ans : The
force on the wall ; F = -(dEn/da)
The energy of the ground state ;
E1= π2ђ2/2ma2
Hence the force on the wall F = -(dEn/da)|a= 10-10 = π2ђ2/2ma3
= π2(1.054*10-34)2/{9.1*10-31*(10-10)3}
=1.21*10-7N
Lovely sir❤️❤️
ReplyDelete